Parallelization of Computational Fluid Dynamic
Simulation For Data Center Air-Conditioning
System

Jin Hu(jinh), Siliang Lu(siliangl)
Dec 2016

Project Report

1 Introduction

We are going to implement a 2D CFD solver to simulate airflow patterns of a
Data Center Air-Conditioning System with CUDA and MPI model.

1.1 Data Center Cooling

Data center is a specially designed space, which houses numerous servers with
high power intensity. Therefore, data center requires cooling all year round.
However, without proper airflow design of the air-conditioning system, it will
take risks of failure due to high temperature zone. Therefore, CFD simulation
is necessary for engineers to detect the potential problem due to bad air flow
design.

In order to detect the potential problem due to bad air flow design, com-
putational fluid dynamic (CFD) simulation is necessary. Our 2D Navier-Stokes
solver is aimed to predict the interior air flow patterns and temperature distri-
bution with different inlet velocities and validate the results with Ansys. The
simulation results can be used to help computer room air conditioning(CRAC)
system designers to identify better CRAC configurations.

1.2 Theories

Computational Fluid Dynamics is using computing machinery to solve/simulate
physical phenomena with fundamental theory in the field of fluid dynamic/mechanics.
With the governing equations of fluid mechanics: Navier-Stokes (N-S) equations

(as shown below), one can simulate the flow patterns in a fluid space. Continuity
equation:

ou Ov
%+87y_0 (1)

Figure 1: Update of A Cell

boundary strip boundary of domain £2
23 ¥ I i |]
J=imax+1 /
J=)max
i=2

=

=0

0 i=l i=2 i=imax i=imax+|
Figure 2: Overall Discretized Domain

Momentum equation:

ot O0r Re 0z2 0y? Ox Oy

v 9Op 1 ,0% 0%, Ouww 9(v?)

_— _ = —(—— _—) = — 3

ot * oy Re(6x2 6‘y2) ox Oy 9y (3)
Energy equation:

ot ox dr RePr 0z2 0y

where Re = %.

With finite difference method, a quadrilateral mesh grid can be created.
However, there are many other topological meshes, which can be categorized
as structured mesh and unstructured mesh. Instead of finite difference method,
finite difference volume is a dominant discretized method used in CFD package
since unstructured mesh can be easily implemented with it.

In addition, numerical flow simulation is a dominant method to solve the
unsteady incompressible N-S equations. With this method, the continuous do-
main is discretized and apply the discretized domain to the continuous N-S
equations, namely a finite-dimensional problem. The simplest discretization of
N-S equations is to use finite difference method to update the values of each cell
until it converged. For specific fluid problem, a cell of a staggered 2D grid is
shown in figure [I] Besides, the overall discretized domain is shown in figure 2]

+ q/// (4)

1.3 Problem & Opportunity

Since the finer mesh will increase the accuracy of CFD simulation, scientists ex-
pect to reduce the mesh size. However, the computational cost will increase dra-
matically as the mesh gets finer. Therefore, parallel computing becomes useful

Table 1: Velocity Boundary Conditions

boundary conditions
inlet inflow
outlet outflow
axis symmetry
others no-slip

Figure 3: Datacenter Rack Model

in CFD simulation. In addition, due to complex geometry and boundary condi-
tions of data center air-conditioning system, it is usually a time-consuming task
to simulate the airflow patterns inside the data center. Hence, our problem is to
parallelize the serial version of simulating airflow patterns of the air-conditioning
system in a data center. physical model and boundary conditions (data-center;
lid-driven cavity) The geometry is shown in figure [3{ and the velocity boundary
conditions are shown in table Since the data center contains many racks,
we just investigate the airflow patterns around one rack. In addition, since the
geometry is symmetric, only half of the domain is calculated.

In order to simplify the geometry, the lid-driven cavity model (without ob-
stacle) was firstly developed to ensure the correctness after parallelization. The
physical model and the initial conditions of lid-driven cavity is shown in figure

——l
u=u*v=0
u=0 u=0
v=0 v=0
u=v=0

Figure 4: Lid Driven Cavity Model

Y

Figure 5: Visualization of underfloor air distribution system in data center

1.4 Owur Approach

We parallelize the 2D simulation of Data Center Air Conditioning System using
Cuda and MPI. The parallel speedup is to be measured with the baseline of
serial version in C. In addition, the correctness is to be guaranteed with the
Matlab version, which has already been verified with commercial software of
Ansys Workbench. The visualization result is shown in figure [f] More details
about our implementation is discussed later.

1.5 Related Work
1.5.1 Parallelizing Gauss-Seidel with Red/Black Relaxation

Among different parts involved in numerical flow simulation, the most costly
part is calculating pressure with Poisson equations. For the solution of such
large, sparse linear systems, Gauss-Seidel method is applied that each cell (i,j)
is successively processed in every cycle until the pressure value is satisfied.

1.5.2 Communication

Besides Red/Black relaxation, slave/master communication, namely message
passing is also widely used in numerical flow simulation. Y.P. Chen et al. [2]
estimated the communication cost for parallel CFD using variable time-stepping
algorithm. In addition, Mattis Sellen presents an evaluation of parallel perfor-
mance of CFD with unstructured grids and is parallelized by domain decompo-
sition using MPI as the communication library [3]. It was found that the high
performance network becomes significant when the system scales up. In other
words, the node configuration where memory bandwidth saturation limits the
performance with fewer nodes.

1.6 Contribution

We explored the possibility of parallellizing the CFD simulation with Cuda and
message passing model and achieved a good speedup in our MPI implementa-
tion. It can be demonstrated that with better modular design some common

Figure 6: Overlapping Subdomains

N
n| O o e
= | O ol|e
5|0 o|e
(0 ol e

Figure 7: Exchange of Pressure Values

functions or models in physics can be parallellized and a programming frame-
work for similar problems can be built with fast implementations with Cuda or
MPI if needed.

2 Details on Design & Implementation

2.1 Message Passing

For message passing algorithms, we followed the approach to divide the under-
lying domain € into subdomains Q1,s,Q3,...0x and have each processor treat
one subdomain. This first domain decomposition method was proposed by Her-
rmann Amandus Schwarz. In our solver, we used overlapping subdomains, as
shown in figure [f] In each time-stepping loop, each subdomain is assigned to

Figure 8: Exchange of Velocity Values

a processor and communicate with its neighbor processors or master processors
when necessary.

2.1.1 Communication in Boundary Values Exchange

Since the subdomains overlaps with each other, the exchange of data in the
boundary strips must be done in each time-stepping loop. The pressure values
in the boundary strips and the velocity values in the boundary strips must be
exchanged as shown in figure [7] and figure [§] respectively. The data exchange is
performed four times (to the left, right, up and down).

2.1.2 Communication in Master/Slave Mode

Once each processor completes the update of pressure, it has to calculate the
partial sum of the residual independently. Then the respective partial sums of
the current residuals are all sent to the master processor so that it can add them
up. Similarly to serial version, the master processor will decide whether to ter-
minate the pressure iteration and broadcasts a message to all other processors to
update their pressure iteration. Besides pressure iteration, master/slave mode
is also implemented in time step size control, namely calculating the time inter-
val in time-stepping loop. Instead of using constant time interval, we followed
method of the adaptive stepsize control scheme proposed by Tome & McKee to
calculate the interval using the following equation:

1 1 ox oy

St=rmin(— (= +) ————
(2 (5562 5y2) |Umax| ‘Umaac‘

(5)

where 7 from[0,1]. Therefore, when calculating the time interval, the local
maxima of u and v must be sent to the master processor, which determines
the global maxima and calculate the new time interval and then broadcasts the
latter to all processors.

2.2 Cuda Based method

The cuda based parallellization is implemented such that all the matrix related
computation is done in the GPU memory. For all the for loop that is to update
the matrix or matrix rows/columns, it can be computed in parallel in cuda
threads without ordering restrictions. One exception is the Red-Black Gauss-
Seidel parallellization step that is to be discussed more in detailed later. There
are some other parts of the code that requires serialized computation, one is a
sum of all the elements of a matrix, another is taking the max value of a matrix.
The final implementation used third part cuBlas and thrust libraries for this.
Multiple implementations are tried for improving this part of the computation
and it turns out to be a significant part of cost of the whole simulation.

We also use one optimization to improve cache performance. We write new
values to one copy of the matrix in memory while reading from another stale

copy of the matrix in memory. At the end of each iteration or where we need
the new matrix, we swap the pointers to the two matrix.

The Red-Black Gauss-Seidel parallellization is based on the idea that the
update of a cell uli][j] is based on the value of u[i-1][j], uli+1][j], u[i][j-1], u[i][j+1].
From the graph below, we can find that for all the cells u[i][j], if i+j is odd, it only
depends on the even indices. If i+j is even, it only depends on the odd indices.
This makes it possible to update half of the matrix in parallel without ordering
restrictions but still keeping the correctness. The algorithm is as follows,

At each step

1. Send black ghost cells
2. Update red cells

3. Send red ghost cells

4. Update black ghost cells

With Red-Black Gauss-Seidel parallellization, the most repeated computation
part of the simulation can be significantly speeded up.

For the max value of a given matrix, we tried using thrust max_element
function in the extrema utilities. We also tried cublas’s cublasldamax function.
We also implemented our own reduce based max element function. For the sum
of a matrix, it is very similar to the max value function, we also used thrust
reduce based implementation, cuBlas vector multiplication by creating a vector
of all ones, and our own naive reduce based sum function.

Other parts of the code can be executed in parallel without other special
interference or change of logic.

3 Experiments

3.1 Environment Setup

Our C/C++ code should be able to run with different machines specs that has
Nvidia GPU and cuda libraries installed or has MPI libraries installed. We cre-
ated Makefiles that shoule be straight forward to run to generate the simulation
results. No other special setup is required to run our code. However, CFD
simulation is computationally heavy and will benefit from good performance
multi-core GPU/CPU hardware.

To measure the performance, we performed most of the tests and experi-
ments on the latedays cluster. (There are some time that latedays are down or
does not work properly, so we also used a AWS g2.2xlarge with GPU instance
to run our experiments.)

For more details, please refer to readme file in the source code.

If running on CMU machines, PATH needs to be modified according to
http://15418.courses.cs.cmu.edu/fall2016/article/4.

http://15418.courses.cs.cmu.edu/fall2016/article/4

Table 2: Speedup of MPI Based Implementation

Nodes | Processor per node | 32*32 | 128%128 | 256*256
1 1 1 1 1
1 4 1.74 1.98 3.53
1 16 1.78 2.51 7.01
2 2 1.823 0.86 2.04
2 8 0.2336 1.09 4.04

3.2 Experimental Evaluation
3.2.1 MPI experiments

The MPI based method speedup result is shown in the table (We measure the
end to end time and calculated the speedup based on the end to end time. This is
not a good measure for the exact speed up for the parallellization part(because
of Amdahl’s law), but it does illustrate how the MPI method perform under
different scenarios and provide a different and more practical insight.)

3.2.2 MPI Analysis

For the MPI implementation that works on a 20 seconds simulation, the time
for a 256x256 mesh takes 1047.4 to run serially, 198 to run with 1*4 core, 38.16
seconds to run with 1*16 cores, which is pretty fast taking into consideration
complexity of simulation.

As shown in the table, we’ve found the following results: 1. With the same
amount of processors in only one node, the speed up increases as the mesh gets
finer. 2. With the same amount of processors in two nodes, the speed up also
increases as the mesh gets finer except for the mesh size of 128x128. The reason
for the results above is that when mesh gets finer, each processor will have more
computing within its own subdomain. Therefore, the percent of computational
cost due to communication will be smaller. Because of that, message-passing
parallelization could be more useful with large-scale mesh grid (finer or bigger).
3. With the different amount of processors either with only one node or with
two nodes, the speed up is not proportional to the amount of processors used.
The reason for that is that the memory bandwidth limits the performance of
parallelization. 4. Compared to the speed up with only one node, the speed
up with two nodes is not so satisfactory. That’s because the network between
different nodes will also result in extra computational cost.

3.2.3 Cuda experiments

The Cuda based method speedup is shown in the table.

Table 3: Speedup of Cuda Based Implementation
Mesh Size 16*16 64*64 128*%128 | 512*512 | 1024*1024
Time Cuda | 0.335330 | 0.587100 | 3.309735 | 40.260183 | 594.488618
Time Serial | 0.001527 | 0.042056 | 0.426158 | 9.943977 | 142.390774
Speedup 1.00 1.82 3.29 5.22 7.88

3.2.4 Analysis

The Cuda based implementation does not outperform the CPU based code. The
results are shown above.

We can find that the cuda based code is consistently slower than the CPU
based code. We are not sure exactly what makes the cuda based code slow.
There is no sing point or function that makes the cuda code slow, but each
function takes longer than the serial one. There are a few points that may
address the problem.

1. We may not correctly handle the GPU memory correctly such that mem-
ory is when using third part libraries, the conversion between device memory
pointers might actually result in data copied from device to host and then back
to device memory to conform to the thrust or cublas memory layout specifi-
cation. 2. Another obvious drawback is that we did not manage to use the
shared memory well in GPU. So even though we created two copies of each
matrix to improve cache performance, we did not use shared memory explicitly
where certain GPU cores are supposed to access certain parts of matrix. 3.
Also, another important point is that most of the parallellized part of the code
compose only a small proportion of the total execution time of the program.
There are some intrinsic computations that can only be partially parallellized
like the max(sum) and the Gauss Seidel relaxation part. The serial code uses
SOR(another relaxation) in the iterations to reduce the computation to achieve
a faster convergence speedup.

4 Surprises and Lessons Learned

1. Our first implementations of Cuda based parallellization encounters the prob-
lem that we later found to be the Red Black relaxation problem. Our original
assumption was that all the cells in the pressure matrix p in the Poisson com-
putation step can be updated in parallel without restrictions, which turned out
to be wrong. It can be proved theoritically that some order must be respected
when updating the matrix to achieve convergance. Then we found that we
can use the Red Black relaxation, which is one popular way to parallel such
problems. However, our original serial implementation is based on another re-
laxation(SOR), so we did not have enough time to re-structure the entire code
base to support the Red Black relaxation.

The important lesson is that we as programmers still need to learn some
theories behind the program to parallel before we start blindly to speedup the

code. We often have some wrong assumptions that we may find it hard to
discover at first. The ordering restriction actually occurred in the renderer
assignment, but I took it for granted and only thought that was an artificial
restriction that does not happen often in the real world. So I spent a long time
figuring out why our initial random ordered parallellized code does not converge.

2. When implementing message-passing model, one of the important things
to keep in mind is that the order to MPI_Send and MPI_Recv. Since each
subdomain has to communicate with all of its neighbor subdomain, it may result
in never response if all of the processors responsible for subdomains in one row
or in one column are sending message to its next processors at the same time.
In addition, for some of the subdomains, the subdomain boundary coincides
with the boundary of the base domain. Therefore, the processor responsible for
such subdomain may not have to communicate with all four directions. Lastly
but not least, since the base domain is decomposed into several subdomains,
the corresponding boundary values set in the serial version may have to change
since not all of subdomains coincides with the boundary of the base domain or
obstacles.

5 Conclusions

Our project have implemented the parallelization of lid-driven cavity model.
We demonstrated both our parallellized approach can generate the correct sim-
ulation results. The MPI based approach outperforms the serial code as the
number of cores grow. It works well on a single node with multiple cores.

6 Future Work

6.1 For Cuda Based parallellization

1. We would study more third party libraries and consider re-implement it
with thrust libraries given more time and compare the speedup. 2. We will
also investigate other theoritcally sound relaxations that may is suitable for
parallellization.

6.2 For CFD Model

We are facing a problem due to free boundary, which lies in the symmetric axis
since we are computing half of the domain so as to save computing time. To
parallelize the algorithm for solving free boundary value problems. For free
boundary, each time the particles are advanced, it has to be determined which
particles have crossed which subdomain boundary. Therefore, an additional par-
ticle list have to be added for each of the four subdomain boundaries. Therefore,
for future work, we shall continue to parallelize the data center model by con-
sidering the special conditions for free boundary.

10

7 Distribution of Total Credit

We both contributed great effort to the project and worked happily as a team.

8 Website

Please refer to http://thuhujin.github.io/cfd.html for more information.

11

http://thuhujin.github.io/cfd.html

Start

Input Geometry
information

Input Initial
UV FandT

Generate Staggered
Mesh Grid

Set Boundary Valugs for
UVand T

SOR

Update Simulation Time

Figure 9: Simulation Algorithm Flowchart

9 Appendix
9.1 Simulation Algorithm

The simulation begins with geometry, boundary type and simulation control
parameter input. To avoid serious oscillations of pressure value, a staggered
grid mesh is then generated . The main time-stepping simulation loop starts
after initialization. An adaptive time step is calculated for stability purpose.
Boundary values of the matrices of x-velocity (U), y-velocity (V) is updated
at each time step n. Then the values of temperature (T) at each cell in fluid
domain at (n+1) time step is solved. With that, a linear system of pressure
values (P) is solved with Poisson solver with successive over-relaxation (SOR).
With pressure values (P) at (n+1) time step, x-velocity (U) and y-velocity at
(n+1) time step can be solved. Simulation time and step are updated after
each main iteration. The whole simulation terminates when simulation time is
greater or equals to desired end time. The algorithm is shown in the flowchart.

figure [9]

12

9.2 Inputs and Output

The detailed initialization parameters are shown in the table below.

Input Parameters Value
Inlet X-velocity Uintes Case 1:-1m/s; Case 2:0
Inlet Y-velocity Viate: Case 1:1m/s; Case 2:1m/s
Gravity at vertical direction gy 0
Outlet relative pressure 0
Reynolds Number Re 17000
End time t 0-30s
SOR maximum iteration Itermax 100
SOR relaxation parameter w 0.7
SOR tolerance 0.001

The outputs are the airflow velocity and temperature of each cell at the end time.
In the end, a velocity plot of airflow distribution and temperature contour can
be plotted.

References

[1] Griebel, M., Dornseifer, T., Neunhoeffer Numerical simulation in fluid dy-
namics: a practical introduction (Vol. 3). Siam., 1997.

[2] Chien, Y.P., A. Ecer, H. U. Akay, S. Secer, and J. D. Chen. Cost function for
dynamic load balancing of explicit parallel CFD solvers with variable time-

stepping strategies. International Journal of Computational Fluid Dynamics
15, no. 3 (2001): 183-195

[3] Sillén, Mattias Fvaluation of Parallel Performance of an Unstructured CFD
Code on PC-Clusters. Journal of Aerospace Computing, Information, and
Communication 2, no. 1 (2005): 109-119.

13

	Introduction
	Data Center Cooling
	Theories
	Problem & Opportunity
	Our Approach
	Related Work
	Parallelizing Gauss-Seidel with Red/Black Relaxation
	Communication

	Contribution

	Details on Design & Implementation
	Message Passing
	Communication in Boundary Values Exchange
	Communication in Master/Slave Mode

	Cuda Based method

	Experiments
	Environment Setup
	Experimental Evaluation
	MPI experiments
	MPI Analysis
	Cuda experiments
	Analysis

	Surprises and Lessons Learned
	Conclusions
	Future Work
	For Cuda Based parallellization
	For CFD Model

	Distribution of Total Credit
	Website
	Appendix
	Simulation Algorithm
	Inputs and Output

